
ED 204 812

AUTHOR-/
.'17"7,E

,INSTITUTTON

SPONS AGENCY
?rPORT NO
PUB 'DATE
GRANT,
NOT!

FORS- PRICE
DESCRIPTORS

IDENTIFIES

DOCUMENT RESUME
N,

CS 206 527

Powe, Neil
Grammar as a Programming Lancilage. Artificial
Intelligence Memo 391.
Massachusetts Inst. of Tech., Cambridge. Artificial
Intelligence_Lab.
National-Science Foundation, Washington, D.C.
LOGO-M-39
Oct 76
NSF-EC-40708-7
.26P.

MF01/PCO243lus Postage.
Artificial Intelligence: Computer As,sisted
Instruc tion: *Computer Oriented Programs: Elementary
Secondary Education: *Genertitiv6 Grammar;
Instructional Materials: Programing: *Programing
Languages: *Sentence Structure:. Teaching Methods
*Logo System

ABSTRACT
Student protects that involve writing generative

grammars In the computer language, "LOGO," are described in this
paper, which presents a grammar-running control structure that allows
students 'to modify and improve the grammar Interpreter itself while
learning how a simple kind.of computer parser works. Included are
procedures for programing a computer to write postcards, sentences,
poetry, and 'music: (1) draw a robot face, snowflakes, hydrocarbon
structures, ar.d hills: (2) introduce context sensitivity: (3) define
number theory: and (4) parse or analyze word strings. (AEA)

4!************************!
Reproductions supplied by !DRS are the best that can be made

from the original document.
*****************t***:

AI MEMO 391

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

GRAMMAR

AS A PROGRAMMING LANGUAGE

Neil hove

October 1976

ABSTRACT

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER IERIC)

74
his document has been reproduced as .

Mt:MVO bum the person or organs/anon
°romping It
Mimachanueshaveheenmadetoimprove
momductionquahtv.

Points of VIOW or OMIIMMStMed m this dote

MM (to 4,MOSM,10",c" NIL
PMM1011 M policy.

LOGO MEMO 39

This paper discusses some student projects invol.vinTgenerative

grammars. While grammars are usually associated with linguistics,
their usefulness goes far beyond just "language" to many different

domains. Their application is general enough to make grammars a

sort of programming language in their own right.
O

A simple grammar-running control structure is presented, uncomplicated

and very suitable for student tinkering. So not only'can students

write grammars, but they can modify and improve the grammar interpreter

itself, learning something about how a simple kind of computer parser.

works.

The work reported in this paper was supported in part by the National Science

Foundation under grant number EC40708X and conducted at the Artificial Intelligence

Laboratory, Massachusetts Institute of Technology, Cambridge, Mass.. The views and

conclusions contained in this paper are those of the author and should not be

interpreted as necessarily representing the official policies, either expressed or

Nimplied, of the National Science Foundation or the United States Government.

V

Neil Rowe 2 GRAMMAR AS A PROGRAMMING LANGUAGE

Contents
1. Introduction 5

2. A one-command computer language 5

-3.-An exam; le__a_postcarcLwriting_program 6

4. Writing sentences 6

5. Writing poetry 8

6. Writing music 9

7. Drawing a robot face 10

8. Drawing snowflakes 11

9. Drawing hydrocarbons 12

10. Drawing hills 13

11. Introducing context-sensitivity 14

12. Number, theory 14

13. Additional projects
16

14. Further control structure modifications 16

15. Parsing: turning the grammar around 17

16. Educational utility
18

Appendix: a Logo implementation 19

Acknowledgements
22

References
22

3

Nell Rowe 3 GRAMMAR AS A PROGRAMMING LANGUAGE

The first professor I saw was in a very large room, with forty pupils about him. After salutation,
observing me to look earnestly upon a frame, which took up the greatest part of both the length and
breadth of the room, he said perhaps I might wonder to see him employed in a project for improving
speculative knowledge by practical and mechanical operations. Cut the world would soon be sensible of its
usefulness, and he flattered himself-thara-more-noble-exalted-thought-never-sprang-in-any-other-tiian's
head. Every one knew how laborious the usual method is of attaining to arts and sciences; whereas by his
contrivance the most ignorant person at a reasonable charge, and with a little bodily labour, may write
books in philosophy; poetry, politics, law, mathematics, and theology, without the least assistance from
genius or study. He then led me to the frame, about the sides whereof all his pupils stood' in rank. It was
twenty foot square, placed in the middle of the room. The superficies was composed of several bits of
wood, about the bigness of a die, but some larger then others. They were all linked together by slender
wires. These bits of wood were covered on every square with paper pasted on them; and on these
papers were written all the words of their language, in their several moods, tenses, and declensions, but

without any order. The professor then desired me to observe, for he was going to set his engine at work.
The pupils at his command took each of them hold of an iron handle, whereof there were forty fixed round
the edges of the frame, and giving them a sudden turn, the whole disposition of the words was entirely
changed. He then commanded six and thirty of the lads to read the several lines softly as they appeared
upon the frame; and where they found three of four words together that might make part of a sentence,

they dictated to the four remaining boys who were scribes. This work was repeated three or four times,
and at every turn the engine was so contrived that the words shifted into new places, as the square bits of

wood moved upside down.
Six hours a day the young students were employed in this labour; and the professor showed me

seveiel volumes in large folio already collected, of broken sentences, which he intended to piece together;

and out of those rich materials to give the world a complete body of all arts and sciences; which however

might be still improved, and much expedited, if the public would raise a fund for making and employing five

hundred such frames in Lagado, and oblige the managers to contribute in common their several collections.

He assured me, that this invention had employed all his thoughts from his youth, that he had

emptied the whole vocabulary into his frame, and made the strictest computation of the general proportion

thereriin books between the numbers of particles, nouns, and verbs, and other parts of speech.

Jonathan Swift, Travels into Several Remote Nations of the World (1726), III: 5

4

Nell Role 4 GRAMMAR AS A PROGRAMMING LANGUAGE.

The painting machine had a wheel to hold a tr,ousancl smears of color and a brush mounted on a
pivOted arm. The brush could bemoved -along the arm by one motor, while a second motor worked the arm
around on its pivot. A third rotated the paint wheel, or "auto-palette,"

Random numbers generated by the tape *erirfecrinto-this system, cOntrollificallihreevariables.
The brush could dip up any color, transfer it to z4,11v of a hundred and fifty thousand positions over a
prepared canvas, and dip again, leaving a dot. Atween dottings, it moved through a powerful cleaning
solution.

This cartesien process would go on until either the canvas was completely cosvered or until Ank'
liked what he saw and stopped it. He called the process rand-pointillisme in advance, knowing how
important it was for his former colleagues to have a name to fasten upon from the start. Ank was
prepared to explain in detail the philosophy behind this "marriage of random number and Seurat, which
guarantees all 'the benefits of luminosity, color and harmony".

Now he set it into motion. There were a hundred and.fifty million [sic] potential paintings in there
somewhere, a hundred and fifty million pure abstract patterns without "meaning" or "intention". What he
would see, in just a few hours, would be the end of so-called Humanism, the end of sentiment and prejudice
-- the dawn of Mechanism.

.4,
What he actually saw was a close copy of David s Coronation of Napoleon,. The. details were

blurry, but his painting differed from the original in only one respect.
The archbishop's face was modeled in bright greens.
Ank tried a fresh canvas. The brush rose and fell, faster than the eye could follow, and a

"Remington" took shape: a mounted Indian wheeling his pony to fire an arrow into the flank of a galloping

bison.
Except the pony wasn't wheeling and the bison did not gallop. Instead, both "stood on", or were

solidified into, thick furry pedestals.
"Surrealism?" he whimpered. I've given up my whole career for this cheap surrealism?"
It was almost time to go to Glen Dale's party. He threw the two ruined canvases in the corner

and went to wash his hands. Instead of shaving, he decided to have a drink somewhere.

John Sladek, The Muller,Fokker Effect (1971), ch. 6

Neil Rowe 5 GRAMMAR AS A PROGRAMMING LANGUAGE-

1. Introduction
This paper discusses some student projects involving generative grammars. While grammars are

usually associated with linguistics, their usefulness goes far beyond just "language" to many different

domains., Their application is general enough to .make grammars a sort of programming language in their

own right.
S.

A simple grammar-running control structure is presented, uncomplicated and very suitable for

student tinkering. So not only can students write grammars, but they can modify and improve the grammar

interpreter itself, learning something about how a simple kind of computer parser works.

2. A one-command computer language

. One way to explain the control structure is to think of it as a one-command computer language.

.
Its one command is called 12.(for Rules). Since my experience has been with the language Logo, I will talk in

terms of an implementation of this language Within Logo.IO2 (See Appendix for details of an

implementation.)

The R ("rule" or "replace") command can be expressed as a function (or procedure) with two Het

arguments:

R [NAME] [JOE]

The command works always on a single list (string) of words.. It replaces in the list particular words by

other particular words. That above command, for instance, says to look for all occurrences of the word-

NAME in the list and change them to JOE. We can also replace one word by several:

R [NAME] [THE PRESIDENT OF THE UNITED STATES]

Oftentimes you're going to want to make choices when replacing stulf: That is, you won't always

want to replace NAME with the same name JOE. We might want for variety to replace it occasionally with

TOM, DICK, or HARRY. We can write this as follows:

R [NAME] [(JOE TOM DICK HARRY)]

The parentheses mean fur the computer to choose only one of the things inside. them. (To keep things

simple, I assume random choice with each item having equal probability. If you want one item to be more

likely than the others, put more than one instance of it into the list.)

We can combine the brackets and parentheses in commands:

6

Neil Rowe 6 GRAMMAR AS A PROGRAMMING LANGUAGE

R [NAME] [(JOE TOM DICK HARRY) C. (JONES DOE DOAKES)]

which replaces .NAME by JOE C. JONES, HARRY C. DOE, and so on. Or we can put brackets within

parenthesized expressions:

R [NAME] [(JOE [TERRIBLE TOM] [DICK THE INSURANCE SALESMAN] HARRY) C. (JONES DOE

DOAKES)]

Remember, brackets mean use everything inside them; parentheses mean choose one and only one of the
0

things inside them.

3. An example -- a postcard writing program
R commands by themselves aren't too interesting. YoUtave to put several of them together. In

Logo we can do this by defining a procedure. Here's a way to use the R language to write postcards, an

idea suggested by a ninth grade student of mine:

TO POSTCARD
10 R [POSTCARD] [DEAR NAME , PHRASE . PHRASE . PHRASE . SIGNOFF , NAME]

20 R [NAME] [(TOM DICK HARRY SALLY SUE SANDRA OCCUPANT)]
30 R [PHRASE] [([HAVING A GREAT TIME] [WISH YOU WERE HERE] [WEATHER'S GREAT)

[SURF'S UP] [BE SEEING YOU SOON] [CAN'T WAIT TO GET HOME])]

40 R [SIGNOFF] [(LOVE WEST WISHES] [GOOD LUCK] [SO LONG FOR NOW])]

END

The control structure works on these R commands in the given order. It starts out with a list (string)

consisting of one word, the name of the procedure (POSTCARD). It then goes down the Nit of R commands,
0

making replacements of words in the string wherever it can. It then prints out! the final list. Somerof the

"postcards" this procedure can produce include:

DEAR SALLY , BE SEEING YOU SOON . WISH YOU WERE HERE . WEATHER'S GREAT . GOOD LUCKy HARRY

DEAR TOM , CAN'T WAIT TO GET HOME . SURF'S UP . HAVING A GREAT TIME . BEST WISHES , DICK

DEAR OCCUPANT , WEATHER'S GREAT . -HAVING A-GREAT TIME . BE SEEING YOU SOON . LOVE, SANDRA

4. Writing sentences
We can also write more traditional "grammars". Here's a procedure to write some simple English

sentences:

Neil Rowe 7 GRAMMAR AS A PROGRAMMING LANGUAGE

TO SIMPSENTENCE
10 R [SIMPSENTENCE] [NOUNPHRASE VERBPHRASE]
20 R .[VERBPHRASE] [VERB NOUNPHRASE]
30 R [NOUNPHRASE] [({DETERMINER ADJECTIVE NOUN] NAME)]
100 R [VERB] [(LIKES HATES BOTHERS BEFRIENDS)]
110 R [DETERMINER] [(A THE SOME)]
120 R [ADJECTIVE] [(BIG TINY CHEERFUL SAD HAPPY GREEN PERPLEXED)]

130 R [NOUN] [(BOY GIRL COMPUTER ROBOT MARTIAN)]
140 R [NAME] [(TOM DICK HARRY SALLY SUE SANDRA)]
END

It can generate tkie-following:

THE CHEERFUL ROBOT BOTHERS SOME SAD GIRL
TOM LIKES THE GREEN COMPUTER
A HAPPY MARTIAN BEFRIENDS SALLY

(

The nice thing is that you can add new features quit./ easily to this sentence generator. For

instance, you can get sentences like

SOME BIG BOY IS SAD
A CHEERFUL ROBOT IS PERPLEXED
SANDRA IS CHEERFUL

by just changing line 20 to:

20 R [VERBPIJ,RASE] [([VERB NOUNPHRASE] [IS ADJECTIVE])]

And, if you like, you can include adverbs in your sentences. Change line 20 to:

20 R [VERBPHRASE] [ADVERB ([VERB NOUNPHRASE] [IS ADJECTIVE])]

and add a line. 90:

,90 R [ADVERB] [(OFTEN SURPRISINGLVERHAPS DUTIFULLY)]

Example:

DICK OFTEN IS HAPPY
A GREEN GIRL DUTIFULLY BEFRIENDS THE BIG ROBOT

Or suppose we want to allow an indefinite number of adjectives in front of the noun, like

THE BIG HAPPY GREEN ROBOT

which we can do by

30 R [NOUNPHRASE] [([DETERMINER ADJSTRINP. NOUN] NAME)]

35 R [ADJSTRING] [ADJECTIVE (ADJSTRING [])]

(The bracket pair [] means the '"empty list" or the "list of no elements'. If it is chosen instead of

ADJSTRING, ADJSTRING will be replausci by only ADJECTIVE.)

Neil Rowe GRAMMAR AS A PROGRAMMING LANGUAGE

Note that line 35 works because whenever a rule substitutes something in a sentence, it resumes

.saarching just to thedeft of the inserted stuff. (That's to be sure to never "miss" a possible substitution.)

So you can insert stuff into the inserted stuff and so on. Hence dine 35 just keeps piling up adjective, in

front of tho noun until it manages to choose the second choice, the empty list.

Thus this allows us to get:

THE GREEN PERPLEXED ROBOT SURPRISINGLY LIKES SOME TINY SAD BOY
SUE PERHAPS HATES A BIG GREEN HAPPY_MARTIAN

Finally, suppose we want to have compound sbritences, sentences composed of two subsentences

joined by a word like "and". Change line 10 to read

10 R [SIMPSENTENCE] [NOUNPHRASE VERBPHRASE ([] [(AND BUT SINCE THOUGH)

SIMPSENTENCE])]

giving:

THE TINY HAPPY ROBOT OFTEN LIKES SANDRA AND TOM SURPRISINGLY IS SAD

and so on. There are many possibilities for further development.

So in summary here's our new improved sentence generator:

TO SIMPSENTENCE
ID R [SIMPSENTENCE] [NOUNPHRASE VERBPHRASE ([] [(AND BUT SINCE .THOUGH)

SIMPSENTENCE])]
20 R [VERBPHRASE] [ADVERB ([VERB NOUNPHRASE] [IS AlZE6IVE])]
30 R [NOUNPHRASE] [([DETERMINER ADJUST NOLIN] NAME)]4

35 R [ADJUST] [ADJECTIVE ([] ADJUST))
40 R [VERB] [(LIKES HATES BOTHERS BEFRIENDS)]
50 R [DETERMINER] [(THE A SOME)]
60 R [ADJECTIVE] [(BIG TINY HAPPY SAD GREEN PERPLEXED)]

70 R [NOUN] [(BOY GIRL COMPUTER ROBOT MAPTIAN)L.
80 R [NAME] [(WA DICK HARRY SALLY SUE SANDRA)]
90 R [ADVERB] [(OFTEN SURPRISINGLY PERHAPS DUTIFULLY)]

END

5. Writing poetry'
Consider the problem of writing poems in which the last syllables of the .line must rhyMe. We

could try:

t
..1

r.

9

. Neil Ramie 9 'GRAMMAR AS A PROGRAMMING LANGUAGE

TO LIMERICK
10 R [LIMERICK] [A A B B A]
20 R [A] [DOWN UP DOWN UP DOWN RHYME1]
30 R [B] [DOWN UP DOWN RHYME2].,
40 R [RHYME1] [(DATE FATE WAIT SATE SMELL BELL HELL WELL-BROKE COKE JOKE YOKE)]
50 R [RHYME2] [(FEAT BEAT SEAT HEAT WAY SKY BAY HAY MOOD FOOD STEWED RUDE)]
60 R [DOWN] [(UH AH ER IR AN UN IS US AW E)]
70 R [UP] [(MEAN PROTE VAST SPRILL TRAJAMED SLOOSED POUNT GRASP DRUNK)]
END

but this runs into a problem: each time the interpreter substitutes for RHYME1 or RHYME2,; it will Choose 'a

new word. So we have no way of ensuring that all the A fines or all the B lines will have the same rhyme.

That is, we have no way to force a rhyme.

It seems what we need is a new R command", call it RONCE, that works just like the old, except it

only chooses once. (See Modification *1 in the Appendix.), Using it we can rewrite our limerick-writing

program this way:

TO LIMERICK
10 R [LIMERICK] [A A B B A]
20 R [A] [DOWN UP DOWN UP DOWN RHYME1]
30 R [B] [DOWN UP DOWN'RHYME2]
40 R.ONCE [RHYME1] [(ATE ELL OKE)]
50 R:ONCE [RHYME2] [(EAT AY 00D)]
100 R [ATE] [(DATE FATE WAIT SATE)]
110 R [ELL] [(SMELL BELL HELL WELL)]
120 R [OKE] [(BROKE COKE JOKE YOKE)]
130 R [EAT] [(FEAT BEAT SEAT HEAT)]
140 R [AY] [(WAY SAY BAY HAY)]
150 R [00D] [(MOOD FOOD STEWED RUDE)]
200 R [DOWN] [(UH,AH ER IR AN UN IS US AW E)]
210 R.[UP] [(MEAN PROTE VAST PRILL TRAMMED SLOOSED POONT GRASP DRUNK)]
END.

A sample limerick:

AH GRASP UN POONT E DATE
AN SLOOSED IR POONT UH SATE
ER VAST AN FOOD
UN=PRILL IS STEWED
AW PROTE IR TRAMMED US FATE

Our Logo system has a speech synthesizer, so we can generate actual sounds (as in the case .of the above)

by figuring out the phonemes necessary for each word.

6. Writing music
It's easy to extend these ideas to Music. Let's- consider a situation in which we're only concerned-

with specifying the pitth and durations of musical notes. We can specify the pitch as a letter -- assuming

Neil Rowe 10 GRAMMAR AS A PROGRAMMING I.ANGUAGE

a
the range of an octave, that 'means letters C, D, E, F, G, A, B, and an upper C which we can call CC. The

duration can be either a Q (quarter), H (half), DH (dotted half),"or W (whole) note.

Then we can re-present a melody by a string;-For instance,

[CHEQAQ]

represehts a C half note followed by E and A quarter notes.

So here's a program that writes melodies according to a few simple harmonic schemes.: It first

chooses a harmony for each measure, then constructs measures to fit that harmony. To make its melody a

little more unified, it uses R.ONCE to make sure that measures with the same harmony have the same

rhythm.

TO MELODY
10 R [MELODY] [CCHORD (CCHORD GCHORD FCHORD) CCHORD ([CCHORD GCHORD DCHORD]

[GCHORD DCHORD GCHORD] [GCHORD CCHORD FCHORD]) GCtIORD CCHORD].
20 R.ONCE [CCHORD] [([CNOTE W] [CNOTE OH CNOTE Q] [CNOTE HbNOTE Q CNOTE Q]))
30 R.ONCE [GCHORD] [([GNOTE H GNOTE H] [GNOTE Q ORDNOTE Q GNOTE Q ORDNOTE Q])]
40 R.ONCE [FCHORD] [([FNOTE H FNOTE H] [FNOTE Q ORDNOTE Q FNOTE Q ORDNOTE
50 R.ONCE [DCHORD] [([DNOTE H DNOTE H] [DNOTE Q ORDNOTE Q DNOTE Q ORDNOTE Q])]
100 R [NOTE] [(C E G CO)]
110 R IGNOTE] [(D G B)]
120 R [MOTE] [(C F A CC)]
130 R [DNOTE] [(D F A)]
140 R [ORDNOTE] EFGA B)]
END

Sample melodies are givenlin Fig. 1. With our sysiem you can take such a melody and play sounds for it

via a "music box".

7. Drawing si robot five .

We can apply the idea of a grammar to drawing designs too. Consider something called, a "ttirtle".

that lives on a surface of something like a television picture tube. Suppose he can do two things: he can

move forward a specified distanca, leaving a line behind him, or he can turn right a spedified number (either

positive or negative) of degrees. These operations I will call "FORWARD" and "RIGifT"(which can be

abbreviated "FD" and "RT"). (He can' only do one of those at a time.)

So, for example, these are the commands you would give the turtle to draw a square:

FD 10 RT 90 FD 10 11.90 FD 10 CRT 90 FD 10 RT 90

But it's hard having to draw pictures with your pan constantly down. For this reason, the turtle also 'has a,

command called "PENUP". It allows him to move around jiiit the same as always, except that he won't leave

11

Nail Rowe 11 GRAMMAR AS A PROGRAMMING-LANGUAGE
1

any line behind him. Normal mode is restored by a command called "PENDOWN".

So let's write a grammar to draw "robot" faces. We'll use a large square for the head, small

squares fo:- the eyes, and small rectangles in a row for the teeth. We sake choices as to whether to have

a tall head or a square head, have the eyes and mouth high or low in the head, and whether to show the...,

teeth in the mouth.

TO'FACE
10 R [FACE] [HEAD (SETHIGH SETLOW) EYES MOUTH]

4

20 R [HEAD] [(TALLHEAD SQUAREHEAD)]
100 R [EYES] [EYE SETUPEYE2 EYE]
200 R [MOUTH] [SETUPMOUTH (OPENMOUTH SIXTEETH)]
210 R [S1XTEETH] trOOTHPLUS TOOTHPLUS TOOTHPLUS TOOTHPLUS TOOTHPLUS TOOTHPLUS]'
220 R [TOOTHPLUS] [TOOTH PENUP FD 10 PENDOWN]
300 R [SETHIGH] [PENUP FD 80 RT 90 FD 20 PENDOWN]
310 R [SETLOW] [PENUP FD 50 RT 90 FD 20 PENDOWN]
320 R [SETUPEYE2] [PENUP FD 40 PENDOWN]
330 R [SETUPMOUTH] [PENUP FD 19 RT 90 FD 55 RT 90 PENDOWN]
END

where the remaining undefined words are just rectangles and squares of various sizes. They can be

defined by a length and a width:

TALLHEAD as 140 by 100
SQUAREHEAD asI100 by 100
EYE as 20 by 20
OPENMOUTH as 60, by 15
TOOTH as 10 by'15

Sample faces are given in Fig. 2.

8. Drawing snowflakes
Now let's write a grammar to draw so- called "snowflake curves", by making up a list of FD and RT

instructions, and then executing them in sequence. "Snowflake curves" are a progressive sequence of

drawings I,like those in Fig. 3. They follow rules something like this:

TO f LAKE
10 R [FLAKE] [SIDE R SIDE R SIDE R]
20 R.ONCE [SIDE] [([FD 1] [SIDE L SIDE R SIDE L SIDE])]
END

whole R stands for NT 120" and L stands for "RT -60" (which is the same as turning left 60).

Line 20 says that at any point in the process, either make all the SIDEs straight lines or else
.

elaborate_all of them. But this runs, into a curious problem: if we take the second choice in that line, well

never get out of line 20, because with every substitution for SIDE four new SIDES are added that must also

"4 4 12

Neil Rowe 12 GRAMMAR AS A PROGRAMMING LANGUAGE

be substituted for! (Like Hercules and the Hydra.) But on the other hand, if we made line 20 a R rather;

than R.ONCE command, we would be getting asymmetrical snowflakes, which isn't what we want either.

We could avoid this problem if we just never again touched things we substituted Into the

grammar. ,(See Appendix, Modification *2.) But this runs into a further problem that we'll never come back'

to line 20 after we're through with it, and line 20 might have left SIDEs in the string. So modify the

grammar control structure so that lines of the grammar get "second chances". We'll still keep the idea of

applying the rules in the specified order, but when we come to the end of them, we'll go back to the

beginning again. So we'll repeatedly "cycle" through until there's nothing left to substitute for. (See

Appendix, Modification *3).

So now the FLAKE we originally wrote works.

9. Drawing hydrocarbons
We can use grammars to explore some aspects of chemical structure. Consider the following

grammar for drawing some hydrocarbons:

TO HYDROCARBON
10 R [HYDROCARBON] [MARK "C" CHAIN LT 90 CHAIN LT 90 CHAIN LT 90 CHAIN LT 90]
20 R [CHAIN] [(HATOM HATOM HATOM HATOM HATOM CATOM C2ATOM)]

30 R [HATOM] [SHORTDASH MARK "H" RT 180 SHORTDASH]
40 R [pAToyi [DASH MARK "C" LT 90 CHAIN LT 90 CHAIN LT 90 CHAIN LT 90 DASH]
50 R [..Q2ATOMa [DASH MARK "C" LT 90 CHAIN LT 90 DOUBLEDASH MARK ".C" LT 90 CHAIN LT 90

CHAIN DOUBLEDASH DASPfk
END

where MARK is a command that draws a letter, and where DASH, SHORTDASH, and DOUBLEDASH are defined

in the obvious way.

The gramniar builds up a molecule by starting with a carbon atom and attaching to each of its four

sides either a hydrogen atom, a single-bonded carbon atom, or a double-bonded carbon atom pair. In the

case of the last two, the process is repeated for bonds of those carbon atoms.

Note that since the entire molecule must be drawn by a step-by-step process, "backing up" must

be done at times -- when you draw an H, you must back up to the center of the attached C. That's the

reason for the extra SHORTDASH, DASH, and DOUBLEDASH in lines 30, 40, and 50 -- they're just wayi of

backing up. The easy way to do this in this case is just to redraw the dashes going the other direction,

since they're all symmetrical.

13

C

13 GRAMMAR AS A PROGRAMMING LANGUAGE

Some sample chemical structures are given in Fig. 4.

10. Drawing hills
Let's write a grammar for drawing different sizes of "hills" -- that is, lines that

down in a symmetrical way. We could try:

TO HILL
10 R [HILL] [RT -45 PEAK RT 45]
20 R [PEAK] [FD 10 (PEAK [RT 90]) FD 10]
END

slope up, then.

which gives "hills" like those in Fig. 5.

But now what about making the slopes more gradual, like real hills? One way might be to follow a

set of commands like this:

U UUDDDDDDUUU

where "U" stands for the upward-curving arc "FD 2 RT -5" and ND" stands for the downward-curving arc

"FD 2 RT 5". Fig. 6 shows a few of this type of hill.

For a grammar, this suggests (assuming the original control structure, without the modifications):

TO HILL
10 R [HILL] [U D (HILL []) D U]
END

(Remember, the [] represents a list of no words at all. So If the random choice chooses it, HILL will be

replaced by [U D D

But this doesn't work. It generates the U's and D's alternately, like

U DUDUDDUDUDU

instead of what we want:

U UUDDDDDDUUU

So we could try (assuming Modification *3, cyclic rule application):

TO HILL
10 R [HILL] [UPSLOPE DOWNSLOPE]
20 R [UPSLOPE] [U (UPSLOPE []) D]
30 R [DOWNSLOPE] [D (DOWNSLOPE []) U]
END

but that means that the two slopes can be of different heights, as for instance

UUUUUUUUDDDDDDDDDDUU

GO

_._Neil Rowe_ 14 GRAMMAR AS A PROGRAMMING LANGUAGE

which isn't what we want either. Is there a way out?

11. Introducing context-sensitivity
It seems we've come up against a basic limitation of our grammar interpreter. That is, we can by

the R.ONCE force the gramnlar to make a consistent choice (expansion) in several instances of the same

symbol. This is one way of getting coordinated substitutions. But we cannot make one choice affect

another. That's what we need in this hill example -- we have to create two independent types of

symmetry.

What we need is some way to restrict the application of rules to only particular contexts. The

simplest way might be to make the first argument to the R and R.ONCE commands, which represents the

stuff we're looking to match, be more than one word. (See Appendix, Modification *4.) That way we could

write

R [U MIDSLOPE] [U U MIDSLOPE D]

meaning that we want every occurrence of MIDSI OPE that is preceded by an U to have another U inserted

in front of it, and another D inserted after it. So we could write'the hill-drawing program this way

(assuming that Modification *1 (R.ONCE), Modification *2 (no immediate replacement of substituted words),

and Modification *3 (cyclic rule application) are still in effect):

TO HILL
10 R [HILL] [U MIDSLOPE D D MIDSLOPE U]
20 R.ONCE [MIDSLOPE] [([] MIDSLOPE)]
30 R [U MIDSLOPE] [U U MIDSLOPE D]
40 R [D MIDSLOPE] [0 D MIDSLOPE U]
END

where, as before, "U" stands for "FD 2 RT -5" and "D" for "FD 2 RT 5". We can indeed now draw the hills

of Fig. 6.

12. Number theory
As a final example of what we can do with grammars, note that some number-theoretic ideas can

be defined by them. For example, we can generate all odd powers of two by a one-line grammar:

TO ODOPOWER2
10 R.ONCE [ODDPOWER2] [([2] [2. 2 * ODDPOWER2])]
END

Or write out strings consisting of an odd power of 2 number X's:

1 5

Neil Rowe 15 GRAMMAR AS A PROGRAMMING LANGUAGE

TO ODDP2
10 R.ONCE [0DDP2] [([X X] [000P2 000P2 ODDP2 ODDP2])]
END

Or you could generate members of the Fibonacci series, using our HILL grammar as a model (assuming all

Modifications in effect except 2):

TO FIBO
10 R [FIBO] [A + B] -

20 R.ONCE [A] [(1 NEWB)]
30 R [1 + 8] [1 + 1]
40 R [8 + 1] [1 + 1]
50 R [8] [F180]
60 R [NEWS] [8]
END

The final string produced will be alternating l's and +'s, like 1 + 1 + 1 + 1 + 1. While it is being generated,

the string consists of A's and B's alternating with +'s. The number of A's represents the nth Fibonacci

number, the number of B's the (n +1)th Fibonacci number, and hence the total number of letters the (n+2)th

Fibonacci number.

Line 20, the only line where a choice is made, decides whether to replace all symbols by l's now

or go on to generate the next largest Fibonacci number. Lines 30 and 40 are just to ensure that when you

are finishing the generation and 1 is the selection in line 20 (i.e., all A's are changed into l's), all B's will be

changed into l's too.

13. Additional projeota
Try 'writing grammars for the following.

1. Simple stories, e.g. fables

2. Stereotyped newspaper stories

3. Advertisements

4. Mantras

5. Something like SIMPSENTENCE but with subject-verb agreement in number (singular vs. plural)

6. Or ability to use "an" and "a" properly

7. Or ability to substitute a pronoun (the correct ono) occasionally

8. Simple sentences in some foreign language

9. Simple dialogues between two or more people (e.g. plays).

16

Neil Rowe 16 GRAMMAR AS A PROGRAMMING LANGUAGE

10. Musical melodies based on melodic (as oppOsed to harmonic) considerations. For 'instance,

consider which notes of the scale,sound good after a particular other note of the scale..

11. Passacaglias on a given ground; that is, music with a bass (lowest) part that consists of a

Short melody repeated over and over

12. Rondos where the sections are elfin ternary form; that is, music consisting of a single section

alternating with other sections-(as for instance ABACADA), where each-section-consists of-three-parts-,--the

first and last parts being identical (ABA)

13. Different kinds of simple houses

14. Apartment houses of random size and shape, with shades drawn for random windows, plants in

the window for random windows, etc.

15. Space-filling curves; that is, given a square region of fixed size, a line within it such that any

point within the square is closer than some small fixed distance away from the line.

16. Trees and bushes. Find out something about the way real ones grow (like_ how far between

branches, or what angles the branches are likely to grow out at), and try to model it.

17. A different kind of chemical structure. Try using context-sensitive rules to eliminate

chemically impossible or. unlikely configurations.

18. Simple particle physics. That is, try to create bubble chamber particle tracks. For example a

neutron (moving in a straight line) hits another particle and breaks up into a proton (moving in a clockwise

curve) and an electron (moving in a counterclockwise curve), both of which eventually decay into something

else. (Note that some particles are invisible.)

19. Some kind of electronic circuit diagrams, perhaps digital logic

20. The rows of Pascal's triangle

21. Composite (not prime) numbers

22: *Agendas. for your daily activities

14. Further control structure modifications

As you may observe, one of .the nicest things about this system Is the relative ease of making

changes to the control structure (or interpreter), thanks to Its relative simplicity. This paper has

introduced four significant improvements to the original "bare bones" interpreter: the R.ONCE future,

17

Neil Rowe 17 GRAMMAR AS A PROGRAMMING LANGUAGE

preventing rules from reworking just- substituted words, cyclic rule applicati'on, end simple

context-sensitivity. Many further projects are suggested, some from current work in linguistics

For one, it might be nice to have a "wild-card". symbol that will match anything. That is, assuming

* to be that symbol, we could rewrite HILL to be this way:

TO HILL
10 R [HILL] [L MIDUP R R MIDDOWN L]
20 R [MIDUP * MIDDOWN] [([e] [L MIDUP R * R MIDDOWN L])]
END

where * will match whatever is between the MIDUP and MIDDOWN.

Extending this, we might like to specify for part of the matched pattern, not just anything, and not

just a single word, but something in between. Like for a sentence \!Lenerating program:

R [*ADJECTIVE] [(INCREDIBLY AMAZINGLY FRIGHTENINGLY) *ADJECTIVE]

where *ADJECTIVE matches anything that is an adjective.

very powerful idea that might be used is that of the linguistic transformation. This means rules

that work on strings but take into account how the strings were generated (their "derivational"). An

example would be the "passive transformation", as in the following crude form:

R [*NOUNPHRASE1 *VERB *NOUNPHRASE2] [*NOUNPHRASE2 BE *VERB BY *NOUNPHRASE1]

which takes whatever the NOUNPHRASE1 has been expanded to and makes it the object of an agent

prepositional phrase, and takes whatever NOUNPHRASE2 has been expanded to and makes it the subject.

So for instance

THE BIG PINK ROBOT HATES NASTY BOYS

could become, after applying tense rules to change BE to ARE:

NASTY BOYS ARE HATED BY THE BIG PINK ROBOT

Adding this facility involves some challenging problems.

15. Parsing: turning the grammar around
An interesting project is to "turn the grammar around" and use it to anelyze strings of words,

rather than create them. is a given simple sentence grammatical English? Or does a given*

picture of a face show teeth?

A way to do this is just "run a grammar backwards". That is, you start with a string and the last

18

18 GRAMMAR AS A PROGRAMMING LANGUAGE

iule of a grammar. You then try to find a match between things in your string and the second argument to

the R command. (If the second argument contains choices, try -every possibility.) If you find a match,

substitute the first argument. This approach works fine for many context-free grammars.

16. Educational utility
I have tried here to give a concrete example of what has been called "learner - controlled

computing".5 How useful is it educationally? One incident may be revealing. When I first introduced this

system to the author of the postcard-writing program given at the beginning of this paper, I had him write

a grammar for simple sentences. He was studying English and German at his school, so he had a- fair

exposure to what is referred to in the schools as "grammar". So I said, "We need some kind of sentence

pattern. How about noun-verb-noun?"

It sounded familiar to him. So he wrote

TO S
10 R [S] [NOUN VERB NOUN] .
20 R [NOUN] [(PEN BOOK CAT DOG)]

and then said, "What's a verb?"

"An action word," I said, assuming that a hint would be sufficient. He looked p little mystified, but

I prompted to go ahead and try something out, since he could easily change it later. So he wrote

30 R [VERB] [(IS DULL HARD HOT ANGRY)]

ran his program, and got back

BOOK HARD CAT
DOG ANGRY PEN
CAT HOT BOOK

Sentences generated by his own rules stared up at him from the page. He was surprised, and a little

amused. And he began to think about what a verb really was, something which, despite his survival of

many years' of formal education, he hadn't really come to grips with. Verbs, as in fact nouns, must be

"action words", concepts defined by a relationship within a sentence.

This is a lot healthier approach to grammir than any amount of ultimately arbitrary definitions.

And I think it leads to a better understanding of what a verb really is.

1;9

Nell Rowe 19 GRAMMAR AS A PROGRAMMING LANGUAGE

.
Appendix: a Logo implementation

The overall structure. of the components (procedurei) is like this:

SAY

user's procedure (grammar)

R

MATIIPEPLACE

EXPANSION

RANDCHOICE
I

ITEM

SAY is the top-level procedure. It sots the initial word list to the list consisting of one name, the name it is
called with. It then applies the rules in order to this list, making the necessary substitutions.

TO SAY :PROCNAME
10 MAKE "STRING PROCNAME
20 RUN :PROCNAME
30 PRINT :STRING
40 SAY :PROCNAME
END

R is the procedure that executes a particular grammar rule. It replaces in the :STRING list all occurences of
:SYMBOL by :REPLACEMENT.

TO R :SYMBOL :REPLACEMENT
_10 MAKE "STRING MATCHREPLACE :STRING :SYMBOL
END

MATCHREPLACE is the workhorse of the grammar. It goes through the :STRING list word by word. If it
finds an exact match between the :SYMBOL and a word of :STRING, It replaces that word by the
:REPLACEMENT list. (Note that :REPLACEMENT is a free variable, not an argument, in this procedure, to
save a little argument-passing.) It then goes to the beginning of the substitution and resumes 'the search
process from there.

TO MATCHREPLACE :STRING :SYMBOL
10 IF (EMPTYP :STRING) OUTPUT :STRING
20 TEST ((F :SYMBOL) (F :STRING))
30 IFTRUE OUTPUT (MATCHREPLACE SENTENCE (EXPANSION :REPLACEMENT) (BUTFIRST :STRING)

:SYMBOL)
40 IFFALSE OUTPUT' SENTENCE (FIRST :STRING) (MATCHREPLACE (BUTFIRST :STRING) :SYMBOL)

END

'20

Noil Rowe 20 GRAMMAR AS A PROGRAMMING- LANGUAGE

EXPANSION expands the "replacement" (second) part of the R rule. It forms a single simple list for
substitution into :STRING. For parenthesized expressions it makes .a random choice as to which item to use;
for brackets it takes the whole list within the brackets. (Note that the procedure assumes that a sublist .

just inside a bracketed list is parenthesized, and vice versa; it /doesn't actually check.)

TO EXPANSION :STRING
10 IF EMPTYP :STRING THEN OUTPUT
20 TEST LISTP FIRST :STRING
30 IFFALSE OUTPUT SENTENCE (FIRST :STRING) (EXPANSION BUTFIRST :STRING)
40 IFTRUE OUTPUT SENTENCE (EXPANSION RANDCHOICE FIRST :STRING) (EXPANSION BUTFIRST

:STRING)
END

RANDCHOICE figures out the length of a list, generates a random number from 1 up to that number, and
outputs that numbered item of the list. (RANDOM :X :Y outputs a random integer of the range :X through
:Y.)

TO RANDCHOICE :LIST
10 OUTPUT ITEM (RANDOM 1 (COUNT :LIST)) :UST
END

ITEM outputs the Nth item of list L

TO ITEM :N :L
10 IF EMPTYP :L THEN OUTPUT 0
20 IF (:N < 2) THEN OUTPUT FIRST :L
30 OUTPUT ITEM (:N - 1) (BUTFIRST :L)
END

Modification *1: substituting the same choice in all places

Write a new procedure:
TO R.ONCE :SYMBOL :REPLACEMENT
10 MAKE "REPLACEMENT (EXPANSION :REPLACEMENT)
20 MAKE "STRING MATCHREPLACE :STRING :SYMBOL
END

This works because if we expand the :REPLACEMENT list before calling MATCHREPLACE (the string
searching procedure), the resulting list will consist of no sublists, and hence cannot be expanded further.

Modification *2: avoidin ing substituted stuff

It is just neceisary, to change the line in MATCHREPLACE, line 30, which determines what to work
On next after a match is found. Changeit to:

30 IFTRUE OUTPUT SENTENCE (EXPANSION :REPLACEMENT) (MATCHREPLACE (BUTFIRST :STRING)
:SYMBOLS)

assuming Modification *1 to have also been made.

Modification *3: cyclic rule application

To do thit, write these two new outer. procedures:

21

Neil Rowe o 21 'GRAMMAR AS A PROGRAMMING LANGUAGE
3

TO DOLT :PROCNAME
10 MAKE "STRING :PROCNAME
20 CYCLETHRU :PROCNAME
30 RUN :STRING
40 DOLT :PROCNAME
END

TO CYCLETHRU :PROCNAME
10 MAKE "CHANGEFLAG "FALSE
20 RUN PROCNAME
30 IF (:CHANGEFLAG "TRUE) CYCLETHRU : PROCNAME
END

And change MATCHREPLACE so as to set the flag to "TRUE whenever a substitution is actually made in the
string:

25 IFTRUE MAKE "CHANGEFLAG "TRUE

So CYCLETHRU will stop wherever not a single rule of the grammar was applied on execution of
the grammar procedure.

Modification *4: matching for more than one word

We can just modify MATCHREPLACE to handle a :SYMBOL which is`more thari one word (here
assuming Modification *2 and *3 still in effect). COUNT gives the number of items in a list.

TO MATCHREPLACE :STRING :SYMBOLS ,
10 IF ((COUNT :STRING) < (COUNT :SYMBOLS)) OUTPUT :STRING.
20 TEST MATCHP :STRING :SYMBOLS
25 IFTRUE MAKE "CHANGEFLAG "TRUE
30 IFTRUE OUTPUT SENTENCE, (EXPANSION :REPLACEMENT) (MATCHREPLACE (DROPNUM (COUNT

:SYMBOLS) :STRING) :SYMBOLS)
40 IFFALSE OUTPUT SENTENCE (FIRST :STRING) (MATCHREPLACE (BUTFIRST :STRING) :SYMBOLS)
END

Procedure MATCHP checks to "see if :SHORTSTRING exactly corresponds to the begihning of :BIGSTRING.

TO MATCHP :BIGSTRING :SHORTSTRING
10 IF (EMPTYP :SHORTSTRING) THEN MAKE "CHANGEFLAG "TRUE OUTPUT "TRUE
20 TEST ((FIRST :BIGSTRING) (FIRST : SHORTSTRING))
30. IFTRUE OUTPUT MATCHP (BUTFIRST :BIGSTRING) (BUTFIRST :SHORTSTRING)
40 IFFALSE OUTPUT "FALSE
END

Procedure. DROPNUM outputs :LST with.the specified number of items dropped off its front end.

TO DROPNUM :NUMITEMS :LST
t.

10 IF (:NUMITEMS < 1) THEN OUTPUT :LST
20 OUTPUT DROPNUM (:NUMITEMS - 1) (BUTFIRST :LST)
END

;

Neil Rowe. - 22 GRAMMAR AS APRAGRAMMING LANGUAGE

Aoknowledgements
The ideas presented here are not particularly original. There is a large body of knowledge

regarding grammars and parsing within computer science. The idea of writing grammars in Logo as a

student programming project is due to Ken Kahn.6 He constructed a system similar to, but more limited

than that described here, to provide a framework for generating English sentences. I have tried to extend

and clarify his work, in particular by rewriting the interpreter to make it more accessible to student

understanding and tinkering.

Another major influence has been the work of Ira Goldstein and Mark Miller7 in specifying a

grammar for a broad class of programming processes. This work emphasizes the grammatical nature of

programming. Mention should rilso be made of the "production system" model. of Allen Newell and Herbert

A. Sim:0.0

As far as specific precedents, there is SNOBOL, a computer language containing as a subset

several facilities for grammar-like activities.9 However, SNOBOL is not primarily an interactive language.

Its design bias emphasizes, code efficiency, not language usability. These features tend to make it

unsuitable for educational use.

There is also specific work detailing methods of employing grammars In particular

10 11 12 13 14domains. And finally, I must acknowledge the work of Seymour Papert and others, in

developing a new kind of learning environment based around the use of the computer language Logo.

Thanks to Hal Abelson, Andy DiSena, Ken Kahn, and Mark Miller for help with this paper.

References
1. Seymour Papert, "Uses of Technology to Enhance Education", MIT Artificial Intelligence

Laboratory Logo Group Memo *8, June 1973.

2. Hal Abelson, Nat Goodman, and Lee Rudolph, "Logo Manual", MIT Logo Memo *7, June 1974; or

contact the author for a draft of his manual in preparation.

3. Emmon Bach, 'Syntactic Theory, Holt, Rinehart, & Winston, 1973.

4. Andreas Koutsoudas, Writing Transformational Grammars: An Introduction, McGraw-Hill, 1966.

5. Stuart D. Milner, "Learner-Controlled Computing: A Description and Rationale", Journal of

Educational Technology Systems, Winter 1974, p.207.

23

'Neil' Rove 23 GRAMMAR AS A PROGRAMMING LANGUAGE.

6. Ken Kahn, "A Logo Natural Language System", MIT Lqgo Group Working Paper *46, December 3,

1975.

7. Ira Goldstein and Mark Miller, "Intelligent Tutoring Programs: A Pr-oposal For Research", MIT

Logo Group Working Paper'*50, 1976.

8. Allen Newell and Herbert A. Simon, Human Problem Solving, Prentice-Hall, 1972.

9. James F. Gimpel, tntorithmt in SNOBOL4, Wiley, 1976.

10. William; A. Woods, "Mathematical .Linguistics and Automatic Translation", Harvard University

Aiken Computation Laboratory, Report No. NSF-19 (September 1967).

11. David E. Rumelhart, "Notes on a Schema for Stories", in Representation and Understanding,'

Bobrow and Collins, ed., 1975, p.211.

12. Gahan Wilson, "The Science Fiction Horror Movie Pocket Computer", in National Lampoon: Th.,

Paperback Conspiracy, Warner, 1974.

13. Terry Winograd, "Linguistics and Computer Analysis of Tonal Harmony", Journal of Music

Theory, 12 :1 (1968), p.2.

14. A. C. Shaw, "A Formal Pictiwe Description Scheme as a Basis For Picture Processing Systems",

Information and Control 14 1969, p.5

-

24

a

Nell Rowe 24 GRAMMAR AS A PROGRAMMING LANGUAGE

UM MEN NO 112 MN MIN MI IN I
_ MINMIN I 11M "-- MEI I MI ME oNNEr" IN1 IN WIMP" MI I

ME NIN NM =INN -dall - NMI= INN 1M =II ...-tea
as.

arIMM .11111=P I

I. W 11111K -K MAN M
' 11"' /MN

-...

00 00
=III

00
118713

00
tmio

H
H-C-H

H I . H

H-LcC-H
A A

H

C LH.
11111H

C-H C

II II
C-H C-H

C-H

MIK -MOMIIPWIIMMIIIIMINI

00

II
C-H
H 25

C-H

s

I

v 0,011 Rowe GRAMMAR AS A PROGRAMMING LANGUAGE

F r

26 F15.

